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LIKELTHOOD RATIO TEST FOR THE EQUIVALENCE OF TWO
AUTOREGRESSIVE MOVING-AVERAGE TIME SERIES

1. INTRODUCTION

In many areas of spatial and temporal signal processing, the analysis of the relationship
between two (or more) time series is of interest; time delay estimation is one example.
Crosscorrelation analysis can provide insight into a linear relationship between the
signals; however, it does not compare their structural details. For future sonar systems,
the procedures described in this report have the potential to improve sonar operator
performance by automatically determining if two signals or sonar tracks are associated with
the same source.

Specifically, two independent autoregressive moving-average (ARMA) time series are
analyzed to determine whether or not the series may be characterized by the same ARMA
model. If the same model can be successfully applied to each series, the implication is that
the series may have the same parent process; further analysis of the series is then warranted.

To test the equivalence of two ARMA time series models, a likelihood ratio statistic
is derived. The test statistic —2 - log T, where T is the likelihood ratio statistic, has an
asymptotic chi-square distribution with r degrees of freedom. This value is defined as the
number of model parameters in series 1 that are being tested for equality to the same model
parameters in series 2.

In section 2, the likelihood ratio test is derived to measure the equivalence of two
autoregressive (AR) processes with Gaussian innovations. Because the AR model
parameters are easier to estimate and because many time series can be characterized as AR
processes, this special case is treated separately.

Section 3 presents the likelihood ratio for the equivalence of two ARMA processes with
Gaussian innovations. Results from simulated data are described in section 4. Section 5
discusses a general form of the test, as well as provides the conclusions.
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2. DERIVATION OF THE LIKELIHOOD RATIO FOR AR PROCESSES

Let zy, Z2, ... , Zng and yi1, Y2, ... , Yny be realizations of the autoregressions with
respective means u, and p, defined by

pz
Ty = ppt+ Zak (Tt—k — ) + s

k=1
and
Py
Yy = /‘l’y+2ﬂk(yt—k_“y)+vt ) @
k=1
where o3, @z, ... , 0y and By, By, ... , By, are the parameters for the AR pro-

cesses z; and y; with model orders pz and py, respectively. The values u; and v; are
independent Gaussian random variables with

Elw] = p,,

Elwn] = p,,
Eluu) = oé(s—t),
Evsw) = o26(s—t),
Elusv;) = Oforall sandt,

where E[-] denotes the statistical expectation operator and &(-) is the Kronecker delta
function.

For the present discussion, it is of interest to know whether z; (t = 1, 2, ... , nz) and
y: (t =1, 2, ..., ny) are realizations of the same AR process. Since the objective is to test
whether z; and y; have the same parent AR process, pz and py are set equal to p.

Because u; and v; are assumed to be independent Gaussian random variables, the
likelihood function of {u:},;; and {v:}77, conditioned on {z:}} and {y:}{ is

Lix,y; o, B, 02,02, iy, ) = L(x; e, 02, ) *L(y; B, 02, 1) @)




where

ne

P
L(X ) &, 012;’ )u‘z) = (271’0"12:)-("2—-?)/2 eXp(_ Z (wt = Mg — Z ak(xt—k - uz))2/20-121)
t=p+1 k=1
3)
and
ny p
Liy; B,o% p,) = (2moZ) ™D exp(— > (g — p, — 3 Belver — 1,))*/20%) .
t=p+1 k=1
4)
The vectors x, y, «, and 3 are defined by
X = (xp+1,zp+2,...,znz)T,
T
y (Yp+1, Ypb2s - Yng) 5
a = (a,oas, ...,ap)T,

and

ﬁ = (:8171823 "zIBp)Tv

where the superscript T denotes the transpose of a matrix.

The parameters examined and the form of the four likelihood ratio tests are as follows:

1. A test for equal AR parameters (ax = B¢, kK = 1, 2, ... , p) and innovations variances

(07 = o3):

max I;(x, Y a,B,02,02, u,, )
a=:370-u=0'v’ﬂz,ﬂ'y 5)

T =
max 2L(X,2y ) a,ﬁ7a%a0%7 Hz» lj’y)
o, 3,0y, 0y, bay Hy
2. A test for equal AR parameters (o = B, kK = 1, 2, ... , p), innovations variances
2

(02 = 02), and process means (i, = i)

max L(X, y; @, B, 02, 02, iy, thy)

= = 2 = 2
T —_ « ﬂ) /‘Lz l‘l‘y7 U:B Uy . (6) ‘

. 2 2
max L(;t, Y; & B, 0y, 0, s thy)
a, B, 0y Oy gy Hy




3. A test for equal AR parameters (ax = i, k=1, 2, ... , p):

max L(X, y; a,ﬂ,UZ,Ug’ He» “y)

—_ 2 2
o= B, O'u, o'm.uz? /‘l'y

T= : 7
max I;(x72y; a)ﬁ’a?z70121) ( )
o, ﬂ’ Ous 0’0’ ) ,LLy
4. A test for equal AR parameters (ax = B¢ , k = 1, 2, ... , p ) and process means
(ke = m1y):
max L(;c, yg a,B,0%,02, u,, Hy)
T= a=,3,0'u,0'v7pz=uy (8)

. 2 .2
max L(2x7 };1 «a, ﬁ,aw aw/-"’w/‘y)
«Q, Ba Our Oy Mg y‘y

To evaluate T, a value of the model order p must be provided. Using the Akaike
information criteria (AIC) or one of the other selection procedures available!—2 allows
model orders pz, py, and pzy to be obtained for z;, y;, and the pooled data of z; and y;
respectively. Three possible ways to select p are

(a) p = minimum of pz and py,
(b) p = maximum of pz and py, or

(c) p = pzy.

Simulation experiments have shown that selecting p using (a) or (b) results in a liberal
test that rejects the null hypothesis when it is true more often than is predicted by the
probability distribution of the test statistic. Using (c), or p = pzy (the selected model order
of the pooled data), yields a test statistic that has a good fit to the chi-square distribution
with the appropriate degrees of freedom.

2.1 TEST FOR EQUAL AR PARAMETERS AND
INNOVATIONS VARIANCES

This section examines whether o = 8 (k =1, 2, ... , p) and 62 = o2. Since this
test is not concerned with the means p, and u,, it is assumed that the sample means
Z = (1/nz) Y ey 2, and § = (1/ny) > 1%, y: have been subtracted from the realizations
z; (where t =1, 2, ... , nz) and y; (where t = 1, 2, ... , ny), respectively.

The likelihood ratio test statistic to determine whether the two realizations can be




characterized by the same AR process is given by equation (5). The maximum of the
denominator is obtained at the values of o and 3 that satisfy

Aa=a 9)

and
BB=b, (10)

where the ij-th element of A and B are given by
nx
A = Z Tt—iTt—;
t=p+1
and -

ny
Bi; = Z Yt—ilt—j »

t=p+1

and the i-th entry in a and b are given by

nx
a; = E ZtTt—sg
t=p+1
and

ny
b, = Z YtYt—i -

t=p+1

Using the solutions of equations (9) and (10), denoted as & and 3, estimates of o2 and o2
are obtained from

nr p
52 = (1/(nz=p) Y (@— D & z-p)’ (11)
t=p+1 k=1 .
and
ny D .
62 = (1/(ny—p) > @~ B yer)™ (12)
t=p+1 k=1




The maximum of the numerator is obtained at the value of a(/3) that satisfies

Ca=c,
where
nz ny
Gij = Z Te—iTe—j+ Z Y—ilYt—j
t=p+1 t=p+1
and

nz ny
c = Z Ty T+ Z Yt Yi—i -

t=p+1 t=p+1

The estimate of o2 is

: nc P Y P
=3 (xt—kzakxt_k)?+ Y. - X @y-r)| /(nz+ny—2p),
=] k=1

t=p+1 t=p+1

where & is the solution of equation (13).
Substituting &, B, 62, 62, &, and &2 into equations (2) and (5) yields

(&2)—(nz+ny—2p)/2

T = ([ wanrgt) el -

Taking —2 - log T of equation (15) yields

—~2-log T = (nz + ny — 2p) log 6% — (nz — p) log 62 — (ny — p) log &2 .

(13)

(14)

(15)

(16)

Under the null hypothesis, & = 3 and 02 = 02, —2 -log T has an asymptotic chi-square

distribution with p + 1 degrees of freedom.




2.2 TEST FOR EQUAL AR PARAMETERS, PROCESS MEANS, AND
INNOVATIONS VARIANCES '

The previous section derived the test statistic for zero-mean processes. In this section,
the test is extended to include the case where z; and y; have means y, and Wy, Tespectively.
Including the means in equation (1) results in

P
T = pot Y ok (Teok— ) +u,
k=1

p
v = g+ Bu(Yok—py)+ i (17)
k=1

If equation (17) is used, expression (2) becomes
L(X, y: «, ﬁ?. 03:) az, y’:m uy) = (27r0:2t)_(m_p)/2 (2770'33)—(”?!_?)/2‘

nT P 2 R
- exp l:— t; ((mt — HBg) = k§1ak (T4—k — Hz)) /2 %]

1

’ ny 3 2
exp [— ) ((yt—uz»— LA (yt_k—uy)) /203] L@
t=p+1 =

and the test statistic is equation (6).

The maximum of the denominator in equation (6) is obtained by solving equations (9)
and (10), where the ij-th element of A and B are given by

nx
Az] = :>_- Ty Tt—j
t=p+1
and
ny
Bzg = Yi—i Yt—j »
t=p+1




and the i-th entry of a and b are given by

nx
a; = T Ty
t=p+1
and
ny
bi = ﬂt ﬂt—z‘ .
t=p+1

In these expressions, Z; = z; — Z and §; = y: — J, where £ = Y .= 2 /nz and
= Z?=y1 Y [ ny.
As in equations (11) and (12), the estimates of 62 and o2 are given by

& = (Yms-p) Y (B— 3 & Fooi)’ (19)
t=p+1 k=1
and
ny P .
&2 = ((y-p) Y @~ Y Br Gor) (20)
t=p+1 k=1

The maximum of the numerator is obtained by solving equation (13), where the j-th entry
of Cis .

ne ny
Cyj = 3 EBriBij+ Y Goiltrj
t=p+1 t=p+1

and the i-th entry of c is

ne ny
G = Z 43 + Z Yt -

t=p+1 t=p+]_

In these expressions, Z; = z; — & and §: = y: — iI, where i = (nzZ + nyg)/(nz + ny).




Equation (14) now becomes

nz 2 ny 2
5 = [ > (@ - k}i &ka"ct_k> + (ﬂt - kil a‘kﬂt—k) ] [(nz +ny —2p).  (21)
+ —_ =

=p-+1 t=p+1

The test statistic of equation (16) can be evaluated from equations (19), (20), and (21).
Under the null hypothesis & = 8, 02 = 02, y, = p,, and expression (16) has a chi-square
distribution with p + 2 degrees of freedom.

2.3 TEST FOR EQUAL AR PARAMETERS
In many applications, there is interest only in the AR structure of the process, not in the
means (p, and p,) and the innovations variances (o2 and o3).

The denominator of test statistic (7) is maximized by using equations (9)-(12). However,
the numerator is maximized by solving for a, 02, and o2 in the implicit system of equations:

Da=d, (22)
nT P 2
o2 = 1/(nz—p) Z (mt -3 akmt_k> , (23)
t=p+1 k=1
ny » 2
or = 1/(ny-p) ) (yt -2 akyt—k) ; (24)
t=p+1 k=1

where the 7j-th entry of D is

ne ny
Dy = 1/02 Y @iy +1/00 Y yeoith;
t=p+1 t=p+1

and the i-th entry of d is

nT ny
d.,; = 1/0‘,,2‘ Z $t$t_j+1/0'12) Z YtYi—j -
t=p+1 t=p+1

10




These equations may be solved using a fixed-point algorithm. The procedure begins by
estimating o using equation (22); values for o2 and o2 are those obtained from maximizing
l the denominator of equation (7). With the estimate for o, new estimates are obtained for
02 and o2 from equations (23) and (24). This procedure is repeated until the change in
I value of the likelihood function is less than a user-selected convergence criteria. Typ1ca11y,
the algorithm converges in less than five iterations.

The complete likelihood function must be used to evaluate T because the terms involving
the exponential do not cancel. Taking —2 - logT yields

—2.1ogT = (nz—p)logé? + (ny — p)log &>
2
/) S (-2 az) Fa/) Y (v £ auer)
t=p+1 t=p+1 k=1
—(nz — p)log 62 — (ny — p)log 62 — (nz — p) — (ny — p) (25)
or
—2.1ogT = (nz—p)log (&Z/&ﬁ) + (ny —p)log (&3/&3)

+(1/53) i (a:t Eakzt_k) +(1/53) Z (yt k_ ayt—k>2

t=p+1 t=p+1

—(nz + ny — 2p), (26)

where &, 52, 52 maximize the numerator and &, 3, 62, 2 maximize the denominator of

equation (7), respectively. As before, —2 - logT has a ch1-square distribution, but with p
degrees of freedom.

2.4 TEST FOR EQUAL AR PARAMETERS AND PROCESS MEANS

For completeness, the case for equal AR parameters and process means is examined.
Now the denominator of test (8) is maximized by using equations (9) through (12),

11




nT

where z; and y; are replaced by z; — Z and y; — g, respectively (Z = (1/nz) Y =, z; and
7= (1/ny) 3_t2, y:)- The numerator is maximized by equations (22) through (24), where z;

and y; are replaced by z; — fi and y; — i, respectively (i = (nz - Z 4+ ny - §)/(nz + ny)).
The expression for the test statistic is given by equation (26). This value, —2 - log T, has a
chi-square distribution with p + 1'degrees of freedom if @ = 3 and u, = py,,.

12




3. LIKELIHOOD RATIO TESTS FOR ARMA PROCESSES

This section extends the previous results to ARMA processes. Let these processes z; and
y: be defined by

P q
Ty = py+ Z O + (Tp—k — Hy) + s + 2 Oxus—k (27)
k=1 k=1
and
P q
Yo = Hy Tt Zﬁk (T I‘l’y) + v+ Z OrVi—k , (28)
k=1 k=1

where u; and v; are defined as in equation (1). As for the AR models, the ARMA model
orders p and q are the same for both processes z; and y;.

The Gaussian likelihood of z; and y;, written in terms of conditional probabilities, is

nT ny
L(x,y; a’aa :Ba ¢1 0'12u 037 Hz» p'y) = Hf:c(xtlit—l, Q, 01 0-121,’ P’a:) ny(yt|$}t—17ﬂa ¢7 0-32/, p’y):

t=1 =1

(29)
where
a = (a,0..,0)7,
0 = (61,0,..,6,)7,
B = (ﬁpﬁza " p)T
¢ = (¢ ¢2 ..... ¢q)T ’
%1 = (T1,Z2y ., 211)T ,
V-1 = (1,020 0-1)7

Jo(@1|R0,,0,0%,11,) = falzi|e, 0,05, 1,) ,
foilF0,8, 0,00, 1) = fu(uilB, d.0%. )
fol@e|Reo,0,0,0%,1,) = (2mo2ar) ™% exp(—(z: — (u, + 2(t]t — 1)))*/20%a:) |
Fo@elFe-1, 8, d,02.1,) = (2m02b) ™% exp(—(y: — (1, +y(tlt — 1)))?/2030;) ,
z(tlt—1) = Bz — pl%e-1,0,0,05, 1]
y(tlt—1) = Ely — py|5t-1,8, 0,05, 1] ,
13




aﬁat = Var[mtlit—l,aaevaivﬂz]7

Uf,bt = Var[ytli’t—17:3v¢)o-12nuy]'

Var[] denotes the variance of the random variable in the brackets. Substituting
f,(-) and f,;(-) in equation (29) and taking the natural logarithm yields the log likelihood
of x; and y;. When the constant terms involving 27 are ignored, the log likelihood is given by

-2 ].Og L(X, Yy &, eaﬁ7 ¢a a-fu 0'12;1 Hz» p’y) =

—nz - log o2 —Zlogat Z — (u, + 2(t[t = 1)))*/02

t=1
ny ny
—ny-log o2 — Y log b, — Y (y: — (g +y(tlt — 1)))* /o2 b: - (30)

t=1 =1

The log likelihood can be evaluated with a Kalman filter (see appendix) algorithm
and can be maximized with respect to o, 8, B8, @, 02, 02, u,, and p, via a nonlinear
optimization procedure. The quantities a; and b, are calculated as part of the Kalman filter
evaluation of the log likelihood. As in section 2, four likelihood ratio tests are presented for
the equivalence of ARMA processes. The only difference from the AR tests is the inclusion

of the moving-average parameters.

3.1 TEST FOR EQUAL ARMA PARAMETERS AND
INNOVATIONS VARIANCES

The test is for o = B, @ = ¢, and 02 = 02. Asin the AR test, the sample means & and
i are removed from z; and y;, respectively. For this case, the likelihood ratio test is

max L(X, Y, &, 07131 ¢’0'12u 0%)
a=ﬁ70=¢7a121 =0‘3
— M 1
T max L( X,V &, 0 ﬁa d),d,ﬁ,d’%) (3 )

@,6,8,¢,0.,0}

Taking —2 - log T yields

14




nx ny
—2-log T = (nz+ny)-log &2+210g &t+210g by

t=1 t=1

—nz - log &2 — Zlog a; — ny - log a - Zlog b, , (32)

t=1

where &2, @, and b; are obtained by maximizing the numerator of equation (31) and &2,
c‘r:, a;, and b; are obtained by maximizing its denominator. For this case, —2-log T has an

asymptotic chi-square distribution with p + ¢ + 1 degrees of freedom.

3.2 TEST FOR EQUAL ARMA PARAMETERS, INNOVATIONS
VARIANCES, AND PROCESS MEANS

The test in equation (32) assumed zero mean or equal mean data. Here, the test for
Kz = py is included in the likelihood ratio test:

max L(x, y; @, 0,8, ¢a0'12n0'12n .u'a:al*"y)

a=ﬂ, 0=¢’0121=037 By = Ky
max L(x,y;,0,8,¢0,02,0%, g, 1,)
a, 8,8, ¢, 0'3, 02, s Ky

Taking —2 - log T yields equation (32) where 72, as, and b; are obtained by maximizing
the numerator of equation (33) and &2, & &t, and b; are obtained by maximizing its
denominator. Here, —2 -log T has an asymptotlc chi-square distribution with p + ¢ + 2
degrees of freedom.

3.3 TEST FOR EQUAL ARMA PARAMETERS

In many applications, only the ARMA structure of the processes is of interest. The test
for a = B and @ = ¢ is given by

max L(x,y,a 6 ﬂ ¢) Ous ”z’#’y)

= ﬂ, 0= ¢;Uw am Kz p’y
T = . (34)
max L(X, yaa70a37 ¢: Oy w.u'z’/*"y)

2 .2
a, 0) :37 ¢70u7 Ovs Hz» :uy

15




The sample means £ and § are subtracted from the data x and y, respectively.
Substituting equation (29) into the numerator and denominator of equation (34) and then
maximizing the numerator and denominator yields the test value of the statistic 7. Taking

—2-log T yields

ne
—2.log T = nz-log &2+ Zlog ay
t=1
ny

+ny - log &3 + Zlog by
t=1

nT
—nz - log 82 — Zlog a:
t=1

ny
—ny - log &z - Zlog b: , (35)
t=1

where 52, 52, &, and b; are obtained from maximizing the numerator and 6%, 67, &, and b,

are obtained from maximizing the denominator. For this case, —2 - log T is asymptotically
chi-square distributed with p + g degrees of freedom. ‘

3.4 TEST FOR EQUAL ARMA PARAMETERS AND PROCESS MEANS

In this special case, there is a trend in the data. The likelihood ratio test for o = g,
0=¢,and p, =p, is

max L(X —-m,y —m;, 0, ﬁa ¢70'12u a?n:“’w.“y)
T a=ﬂ’e=¢>a§7037ﬂz=ﬂy
= — , 36
max L(x — %,y — §;,0,8,0,02,02, u,, 1) (36)

2 2
«, 0) :87 ¢a Our Ous Bz )u’y

where Z = (1/nz) 3.5 @i, § = (1/ny) 3242, ye, and = (1/(nz + ny)) [302; 2 + 7Y vl -
Maximizing the numerator and denominator with equation (29) and then taking —2 - log T

yields

—2.log T = nz-log &2 +Zlog ay
t=1




ny
+ny - log &Z + Zlog by
t=1

nT
—nz -log 6% — Zlog ay

t=1

ny
~ny - log c‘r;‘; — Zlog b , (37
t=1

where 52, 65, @, and b, are obtained by maximizing the numerator of equation (36)

and &2, &:, &, and b, are obtained by maximizing its denominator. Here —2 - log T is
asymptotically chi-square distributed with p + g + 1 degrees of freedom.
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4. MONTE CARLO ANALYSIS

In this section, the time series test is examined to see how well it fits the chi-square
distribution. As an example, the test of equation (16) is applied to two AR(4) time series,
both defined by

zy = 2.06252;—; — 2.4325xs—o + 1.5847x;_3 — 0.6527s 4 + uy . (38)

Two independent realizations of the above process were simulated. The AR model
order was chosen using the AIC selection procedure. The value of the model order, p,
used in the test was selected from the pooled process. The test statistic was calculated for
10,000 pairs of realizations with a sample size of 200. This statistic was then compared
against a chi-square distribution with (p + 1) degrees of freedom. As a function of model
order, table 1 shows the fraction of the test statistic values that exceeded the chi-square
percentage points for the significance level indicated in the top row. These results indicate
that the test has a good fit to the chi-square distribution. However, the test is, in general,
conservative, which means that the test rejects the null hypothesis less often than predicted
by the chi-square distribution. Depending on the application, a conservative test may be
more desirable than a liberal test because it has fewer false alarms.

Table 1. Fraction of the Test Statistic Values Exceeding the Chi-Square
Percentage Point for Equal Models

Order | Samples | 0.5 0.25 0.1 0.05 | 0.025 | 0.01

5642 0.4975 | 0.2407 | 0.0939 | 0.0473 | 0.0245 | 0.0105
1559 0.4894 | 0.2450 | 0.0943 | 0.0500 | 0.0218 | 0.0051
1033 0.5073 | 0.2536 | 0.1162 | 0.0610 | 0.0358 | 0.0181
845 0.4852 | 0.2379 | 0.0959 | 0.0367 | 0.0107 | 0.0047
921 0.5005 | 0.2617 | 0.0966 | 0.0445 | 0.0206 | 0.0087

OO | O] Oy i~

combined | 10000 | 0.4965 | 0.2444 | 0.9670 | 0.0480 | 0.0237 | 0.0098

The previous paragraph analyzes the test statistic when the null hypothesis is true. Now
the power of the test is examined when the AR processes are different. One of the processes
is as defined above for z;; the second is defined by

Y = 1.971y3_1 - 2.339yt_2 + 1.5208y¢_3 - 06544%_4 + v .
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The simulation procedure described above was applied to these two processes, with the
results presented in table 2. At the 0.05-significance level, the test rejects the equality
of the model parameters of the two processes for 15 to 20 percent of the realizations, as
compared to 5 percent when the two processes are the same. These results are encouraging,
considering the “closeness” of the two processes, which is measured by the location of the
zeros for the characteristic equation of the AR process. Table 3 shows the characteristic
equation zeros for the two processes. A larger separation between the zeros than shown in
this table will result in a greater rejection of equality.

Table 2. Fraction of the Test Statistic Values Exceeding the Chi-Square
Percentage Point for Unequal Models

Order | Samples | 0.5 0.25 0.1 0.05 | 0.025 | 0.01

5538 0.7483 | 0.5256 | 0.3044 | 0.1956 | 0.1201 | 0.0634
1572 0.7366 | 0.5115 | 0.3015 | 0.1915 | 0.1126 | 0.0630
1024 0.7119 | 0.4932 | 0.2734 | 0.1787 | 0.1133 | 0.0684
868 0.7051 | 0.4493 | 0.2385 | 0.1336 | 0.0680 | 0.0323
998 0.7074 | 0.4689 | 0.2485 | 0.1483 | 0.0882 | 0.0451

00 ~J| O O} W

combined 10000 0.7349 [ 0.5078 | 0.2895 | 0.1831 | 0.1105 | 0.0593

Table 3. The Coefficients and Zeros of the Two AR(4) Models

Series 1 Series 2
Coefficients
2.0624611 . 1.9710257
-2.43250 -2.3390543
1.5846875 1.5208008
-0.6520562 -0.6543516
Zeros (polar)
(0.950 , £0.100) ' (0.945 , £0.105)
(0.850 , +-0.200) (0.856 , +0.205)
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5. CONCLUSIONS AND RECOMMENDATIONS

The analysis in this report has studied the equality of the parameters for two ARMA
processes. Four likelihood ratio tests were derived to compare (a) the ARMA parameters
and innovations variances, (b) the ARMA parameters, innovations variances, and process
means, (c) the ARMA parameters, and (d) the ARMA parameters and process means.
The likelihood ratio test statistic has been shown to have a good fit to the chi-square
distribution when the models are identical.

The test statistics presented here are examples of the generalized likelihood ratio test

max L(x, y; 0, 0,)

o _ _6:=6,
" maxL(x,y; 6, 6,) ’
z, Uy

where L(-) is the likelihood of the data and 8, and 6, are the p-vectors of the model
parameters that characterize the data. As shown in the report, —2-log T" has an asymptotic
chi-square distribution with p degrees of freedom when the null hypothesis (8, = 6,) is
true.

Three recommendations for further research are (1) to extend the test to complex-valued
processes, (2) to study the sensitivity of the power of the test when the two process models
become close, as measured by the zeros of the characteristic equation, and (3) to expand
the test for three or more time series.

For future sonar systems, these test procedures can be utilized in the automatic
~ detection and classification of sonar signals, which will reduce the workload and improve
the performance of the sonar operator.
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APPENDIX
LOG LIKELIHOOD EVALUATION FOR THE ARMA MODEL

This appendix presents a Kalman filter*~® procedure for evaluating the log likelihood
of L(z; a, 0,02, ;) (or log L(y; B, ¢,02, 1)), given the model parameters. For the Kalman
filter, let the observation z; be given by the observation equation

Ty = Zth +7:, (A-1)

where z; is the observed data, z is an m x 1 vector of fixed known values, w; is the state
vector of the system, and r; is the measurement error:

The state equation of the system is given by
w; = Aw; + Be;

where A is an m x m transition matriz of fixed known values, B is an m x k matrix of fixed
known values, and e; is a k x 1 vector of Gaussian random variables with

E[et] =0 )
E [ete:tr] = U2Q )
Ele,eT] = Ofort#s.

The known matrix @ is positive definite. Further,

Elr] = 0,

Elr}] = R,
E[ryrs] = Ofors#t,
Elries] = Oforallsandt.

Let w(t — 1 | t — 1) denote the minimum mean-square estimate of w;—, given the
measurements Zi, Zs, ... , Ts—1. Let 02P(t—1|t—1) denote the estimation error covariance
matrix where P(t — 1|t — 1) is known. That is,

E[(wimy —w(t—1]t— 1)) (wmy —w(t —1] t - ) =o’Pt-1]t-1).




Let w(t | ¢t — 1) and P(t | t — 1) denote the predicted values of w; and P(t | t) given z,

Zs, ... , T4—1. These quantities are given by the prediction equations
wt | t—1)=Awt—1]|t—1), (A-2)
Pit|t—1)=AP(t—1|t—1)AT + BQBT. (A-3)

Using the observation z;, w(t | t) and P(t | t) are obtained by the update equations

w(t | t)=wlt|t—1)+P(t|t—za; (2 — 2Tw(t |t - 1)), (A-4)
Pt | t)y=Pt|t—1)—P(t|t—1)za;2TP(t|t-1), (A-5)

where a; = 2TP(t |t — 1)z + R.
The ARMA(p,q) model for z;, given in equation (27), can be written as

r T
Ty = Z Ttk + Z Orue—k + us (A-6)
k=1 k=1

where r = max(p,g + 1). Alternatively, equation (A-6) can be expressed in Markovian form
by

T o3 10 07 F 1 7
(07)) 01 . 0 91
. . 0,
Wy = . . .. Wy—1 + . €, (A—7)
o1 0 . . .01 .
| O, 6. ..00 i A 9.,._1 R

where the first element of w; is z;. Equation (A-7) is the state equation in the
state space formulation of the ARMA(p,q) model. The measurement equation is z; = zTw,
where z = (1, 0, ... ,0,)7. :

For the ARMA(p,q) model without measurement error, R =10, Q = 1,




i (831 1 0. 07
[67) 01 . 0
A= )
Qr_q 0 .01
| o O . 0 0
and
m 1T
61
62
B = .
..91"—1-

To start the recursions in equations (A-2) through (A-5), initial values are needed for
w(0 | 0) and P(0 | 0). Without any measurements, the minimum mean-square estimate of
wp is zero; hence, w(0 | 0) is set to zero. Now, since P(0 | 0) = [wow]], the covariance
matrix of the state vector, the value of P(0 | 0) is the solution P of the equation

P =APAT + BQBT . (A-8)

Using equation (A-2) and noting the stationarity assumptions on the model allows equation
(A-8) to be expressed as

[I - A® AJvec(P) = vec(BQBT), (A-9)
where ® is the Kronecker product. To solve this system of 72 equations, the 72 x 72 matrix

[I — A ® A] does not require inversion. Rather, the columns of P can solved recursively
using the following relations:

k=0

. -1
= (I— zakA") (z ﬂkAk)B (A-10)
k=1

and




D = a,-Apl + Ap,-.;.l -+ ﬁz‘—lB fori>1. (A-11)

After solving for Py = P, the log likelihood can be evaluated using equations (A-2) through
(A-5), given the ARMA(p,q) model parameters.
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